One-Shot Session Recommendation Systems with Combinatorial Items

نویسندگان

  • Yahel David
  • Dotan Di Castro
  • Zohar S. Karnin
چکیده

In recent years, content recommendation systems in large websites (or content providers) capture an increased focus. While the type of content varies, e.g. movies, articles, music, advertisements, etc., the high level problem remains the same. Based on knowledge obtained so far on the user, recommend the most desired content. In this paper we present a method to handle the well known user-cold-start problem in recommendation systems. In this scenario, a recommendation system encounters a new user and the objective is to present items as relevant as possible with the hope of keeping the user’s session as long as possible. We formulate an optimization problem aimed to maximize the length of this initial session, as this is believed to be the key to have the user come back and perhaps register to the system. In particular, our model captures the fact that a single round with low quality recommendation is likely to terminate the session. In such a case, we do not proceed to the next round as the user leaves the system, possibly never to seen again. We denote this phenomenon a One-Shot Session. Our optimization problem is formulated as an MDP where the action space is of a combinatorial nature as we recommend in each round, multiple items. This huge action space presents a computational challenge making the straightforward solution intractable. We analyze the structure of the MDP to prove monotone and submodular like properties that allow a computationally efficient solution via a method denoted by Greedy Value Iteration (GVI).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Sticking with a Winning Team: Better Neighbour Selection for Conversational Collaborative Recommendation!

Conversational recommender systems have recently emerged as useful alternative strategies to their single-shot counterpart, especially given their ability to expose a user’s current preferences. These systems use conversational feedback to hone in on the most suitable item for recommendation by improving the mechanism that finds useful collaborators. We propose a novel architecture for performi...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

The Effect of External and Internal Focus of Attention on Shot Put Skill

The purpose of the present study was to study the effect of attentional focus instructions on motor skills that requiring near to maximum force production, such as shot put skill. In this experiment, twenty eight right- handed girl students with little shot put experience were selected voluntarily. They divided to two groups (internal and external focus) based on their shot put scores in pre- t...

متن کامل

A Novel Trust Computation Method Based on User Ratings to Improve the Recommendation

Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.01381  شماره 

صفحات  -

تاریخ انتشار 2016